
1		

Sentiment	Analysis	

Ruchin	Patel	

	
Introduction	

Proliferation	of	platforms	that	enable	us	to	connect	to	Internet	is	facilitating	an	ever	increasing	number	of	ways	in	
which	we	use	the	Internet.	As	a	result,	every	day	we	are	creating	data	at	an	unprecedented	rate	—	so	much	so	that	
according	to	estimates,	nearly	90%	of	all	of	the	digital	data	that	exists	today	has	been	created	in	the	last	two	years.	A	
large	portion	of	this	data	is	text	data	—	people	updating	their	status	on	Facebook,	millions	of	people	tweeting	about	
trending	topics,	people	expressing	their	thoughts	and	opinions	on	blogs,	news	outlets	publishing	news.	

At	the	turn	of	the	century,	as	the	Internet	was	being	leveraged	to	conduct	e-commerce,	thousands	of	websites	started	
coming	up	that	would	host	reviews	of	these	products	from	people	who	would	buy	these	products	online.	E-Commerce	
companies	realized	that	these	reviews	were	critical	to	the	user’s	decision	as	to	whether	or	not	they	would	purchase	the	
product	 listed	on	their	website.	Companies	such	as	Amazon	started	integrating	these	reviews	in	the	products	pages	
itself.	This	helped	eliminate	the	need	for	user	to	branch	off	to	other	websites,	in	turn	ensuring	that	the	user	spent	more	
time	on	their	website,	thus	leading	to	increased	revenue.	From	the	customer’s	perspective	though,	these	reviews	serve	
one	purpose	which	to	help	in	the	decision	making	process	of	whether	to	buy	the	product	or	not.	Often,	however,	these	
reviews	can	range	from	two	lines	about	to	entire	paragraphs.	

Ultimately,	all	the	various	degrees	of	information	obtained	from	the	review	are	used	by	the	potential	customer,	in	
one	way	 or	 the	 other,	 to	classify	 the	 subject	matter	 of	 the	 review	 in	a	 single	 binary	 domain.	 This	 is	at	 the	 core	 of	
Sentiment	Classification	which	is	the	process	of	determining	the	emotional	tone	behind	a	series	of	words;	gaining	a	very	
succinct	understanding	of	the	opinions	expressed	within	a	vast	pool	of	information.	

The	goal	of	this	project	is	to	apply	Sentiment	Classification	to	reviews	of	various	books	available	on	Amazon.com.	
The	motivation	behind	this	application	is	that	with	thousands	of	reviews	of	each	book,	it	might	not	be	feasible	for	a	
potential	customer	to	sift	through	all	this	information.	Moreover,	there	are	times	when	the	customer	isn’t	necessarily	
concerned	with	the	details	in	the	review,	but	rather	needs	actionable	information	on	which	they	can	base	their	decision	
to	whether	buy	the	book,	or	not.	
	
	

Data	
Our	data	set	was	provided	by	Center	for	Machine	Learning	and	Intelligent	Systems	at	UC	Irvine.	
There	are	reviews	of	eight	books	in	our	data	set.	For	each	book,	the	total	number	of	reviews	available	range	from	

15,000	to	20,000.	Of	the	total	reviews	available	for	each	book,	we	have	used	our	classifier	on	a	sequence	of	subsets,	
wherein	for	each	subset,	80%	of	all	the	reviews	are	used	towards	training	the	classifier	and	the	rest	20%	of	the	reviews	
are	used	to	test	the	predictions	of	the	classifier.	

From	here,	we	will	go	through	each	step	of	our	analysis	and	explain	why	we	made	the	decisions	we	did,	then	discuss	
the	results	of	the	classification	problem.	
	
	

Initial	Thoughts	
Before	beginning	to	talk	about	the	features	of	the	data	set	and	the	algorithm	used	to	design	out	text	classifier,	there	

are	some	general	aspects	of	our	algorithm	that	deserve	mention.	
Generally,	when	we	talk	of	sentiment	analysis,	 it	 follows	that	we	will	have	to	consider	the	grammar	used	in	the	

sentence	to	be	able	to	understand	the	message	being	conveyed	by	the	sentence.	If	we	consider	the	occurrence	of	the	
words	and	not	the	grammar,	the	perceived	meaning	of	the	sentence	would	be	entirely	differently.	For	example,	consider	
the	following	two	reviews	for	the	same	book:	

1. This	book	is	not	bad	and	not	at	all	not	readable.	
2. This	book	is	good.	

2		

The	meaning	 of	 both	 the	 sentences	 is	 same.	However,	 a	 naive	 person	would	 think	 that	 since	 the	word	 ‘not’	 is	
repeated	thrice	in	the	first	sentence,	the	review	for	the	book	must	be	very	bad.	

Just	like	the	naïve	person	in	the	example	above,	Naive	Bayes	algorithm	for	text	classification	does	not	consider	the	
grammar	of	the	sentence.	Instead	it	considers	as	if	all	the	words	in	the	sentence	are	independent	of	each	other.	In	other	
words,	all	permutation	of	the	words	in	a	sentence	essentially	mean	the	same	sentence.	It	is	as	if	the	sentence	is	a	bag	
and	words	are	placed	haphazardly	in	it.	Since	this	algorithm	considers	such	an	assumption,	that	is	why	it	is	literally	
called	“Naive".	

Although	 the	 assumption	 that	 the	 features	 used	 in	 classification	 are	 independent	 of	each	 other	 is	 usually	 false,	
analysis	 of	 Bayesian	 classification	 problems	 reveal	 theoretical	 reasons	 as	 to	 why	 Naïve	 Bayes	 classifiers	 are	
unreasonably	effective.	This	is	because	of	the	following	reason	—	while	the	probabilities	estimated	by	Naïve	Bayes	are	
usually	more	than	the	theoretical	values,	this	does	not	matter	since	we	are	only	using	the	said	probabilities	to	make	
decisions	and	not	to	precisely	predict	the	theoretical	probabilities.	It	is	because	of	these	‘Naive’	assumptions	that	Naïve	
Bayes	text	classifiers	are	less	expensive	from	the	perspective	of	time	required	in	execution	when	compared	to	other	
superior	techniques	such	as	boosted	trees.	

It	is	for	the	above	reason	that	we	are	using	Naive	Bayes	algorithm	to	design	our	classifier	since	despite	the	naïve	
assumptions,	practically,	it	works	just	fine.	The	intuition	for	this	becomes	clear	in	the	further	sections	where	we	talk	
about	the	algorithmic	steps	used	to	design	our	classifier.	
	
	
	
	
	

	

Figure	1	Graphical	representation	of	the	number	of	
reviews	 of	 the	 book	 ‘Gone	 Girl’	 that	 received	 ratings	
from	1-5	stars	

	
Features	

For	each	of	the	eight	books	in	our	data	set,	the	data	set	has	the	
review	along	with	the	corresponding	rating	of	the	book	given	by	
a	particular	user	for	the	book.	These	ratings	are	on	a	scale	of	1-5,	
where	 1	 is	 the	 lowest	 rating	 and	 5	 is	 the	 highest	 rating.	 For	
example,	 the	 bar	 graph	 to	 the	 right	 graphically	 displays	 how	
many	reviews	from	the	total	reviews	for	the	book	‘Gone	Girl’	were	
given	1	star,	2	star,	3	stars	and	so	on.	

To	be	able	to	classify	all	the	reviews	of	a	given	book	as	‘good’	
or	‘bad’	with	the	help	of	a	Naive	Bayes	classifier,	we	first	needed	
to	 decide	 a	 threshold	 for	 the	 ratings	 from	 the	 original	 reviews	
that	would	deem	a	given	review,	and	by	extension	the	associated	
book,	either	as	‘good’	or	‘bad’.	After	due	deliberation,	we	decided	
that	any	review	which	has	an	associated	star	rating	of	4	or	5	on	a	
5-point	scale	would	be	deemed	as	a	good	review.	Any	review	with	
ratings	below	4	would	be	considered	to	be	a	bad	review.	As	 a	

consequence	of	this	consideration,	our	classifier	will	classify	each	review	into	two	classes,	namely,	‘good	review’	and	
‘bad	review’.	
	
	

Feature	Processing	
Any	review	for	each	of	the	eight	books	in	our	data	set	is	alphanumeric	in	nature.	Thus,	all	the	words/tokens	in	a	

given	review	do	not	give	us	any	information	about	the	review	per	se	and	thereby	do	not	help	us	in	classifying	a	particular	
review	as	‘good’	or	‘bad’.	For	example,	stop	words,	verbs	like	is,	conjunctions	like	and,	or;	and	punctuations,	numbers	
and	special	 characters.	Hence	we	remove	all	 such	works/characters	 from	the	review.	The	modified	reviews	which	
consider	only	the	words	which	contribute	meaning	towards	a	review	are	referred	to	as	the	filtered	review.	We	then	find	
unique	words	from	each	filtered	review	and	add	them	to	the	vocabulary.	

Thus,	the	vocabulary	for	a	particular	book	consists	of	unique	words	from	each	review	for	that	book.	Since	on	average	
we	have	20,000	reviews	for	each	book,	it	can	be	clearly	seen	that	as	a	result	of	this	the	total	number	of	unique	words	in	
all	of	the	reviews	for	a	particular	book	will	also	be	very	large.	Moreover,	in	this	bag	of	words(vocabulary)	a	majority	of	
these	words	would	occur	only	a	small	 fraction	across	all	the	reviews.	These	words,	which	are	not	common	to	most	
reviews,	will	statistically	not	help	us	classify	a	review	to	the	class	‘good	review’	or	‘bad	review’	given	the	word	came	

3		

from	that	review.	Since	these	words	with	less	frequency	do	not	contribute	towards	classification	process,	words	
occurring	with	frequencies	less	than	1%	in	the	vocabulary	are	also	removed.	
	
	

Algorithm	
For	text	classification,	we	use	the	unique	words,	that	is,	the	tokens	in	a	review	to	classify	the	review	to	either	of	the	

classes	discussed	above,	namely,	‘good	review’	and	‘bad	review’.	If	a	‘Maximum	a	Posteriori’	or	MAP	rule	is	used,	the	
classifier	can	be	described	by	the	following	formula:	
	
	

𝑐𝑚𝑎𝑝	=	arg𝑐∈𝐶	𝑚𝑎𝑥	(𝑃(𝑐	|	 𝑟))	=	arg𝑐∈𝐶	𝑚𝑎𝑥	(𝑃(𝑐)	 ∏		𝑃(𝑡𝑘	|	𝑐))	
1≤𝑘≤𝑛𝑟	

	

𝑃(𝑡𝑘	 |	𝑐)	=	
𝑇𝑐𝑡𝑘

	

∑𝑡′∈𝑉	𝑇𝑐𝑡′	
	

Here,	𝑡𝑘	refers	to	individual	tokens,	𝑐	refers	to	a	specific	class	in	the	set	of	classes	of	classification	𝐶,	𝑃(𝑐	|	𝑟)	refers	
to	the	conditional	probability	that	given	a	specific	review	𝑟,	the	probability	that	it	belong	to	specific	class	𝑐,	𝑃(𝑐)	refers	
to	the	probability	of	selecting	the	specific	class	𝑐,	𝑃(𝑡𝑘	|	𝑐)	represents	the	conditional	probability	that	a	specific	class	𝑐,	
probability	 that	 specific	 token	𝑡𝑘	belongs	 to	 that	 class,	𝑛𝑟	represents	 all	 the	 unique	words	 that	 belong	 to	 a	 specific	
review,	𝑇𝑐𝑡𝑘	represent	the	total	number	of	times	token	𝑡𝑘	appears	in	specific	class	𝑐,	and	𝑉	represents	the	vocabulary	
described	above.	

To	prevent	floating	point	underflow	in	memory,	logarithms	are	used	in	the	above	formulae.	Moreover,	to	prevent	
the	computer	from	computing	values	such	as	log(0)	Laplace	Smoothing	is	used.	Hence,	the	modified	formulae	are	given	
as	follows:	
	

𝑐𝑚𝑎𝑝	=	arg𝑐∈𝐶	𝑚𝑎𝑥	(log	𝑃(𝑐)	+	 ∑	log	𝑃(𝑡𝑘	|	𝑐))	
1≤𝑘≤𝑛𝑟	

	

𝑃(𝑡𝑘	 |	𝑐)	=	
𝑇𝑐𝑡𝑘	+	1	

∑𝑡′∈𝑉(𝑇𝑐𝑡′	+	1)	
	

Once	the	vocabulary	has	been	extracted	from	the	reviews	for	a	particular	book,	we	can	proceed	to	train	the	classifier	
described.	For	this,	we	first	count	the	total	number	of	reviews	for	a	particular	book.	We	then	proceed	to	classify	these	
reviews	to	either	of	the	two	classes	mentioned	above	(feature	processing).	We	now	calculate	the	ratio	of	number	of	
reviews	that	belong	to	a	class	𝑐	∈	𝐶	to	the	total	number	of	reviews.	This	gives	us	the	probability	𝑃(𝑐)	∀	𝑐	∈	𝐶.	We	then	
calculate	the	conditional	probability	𝑃(𝑡𝑘	|	𝑐).	We	first	extract	all	the	words	that	belong	to	reviews	of	a	particular	class.	
For	the	subset	of	these	words	that	also	happen	to	belong	to	the	vocabulary,	we	calculate	𝑇𝑐𝑡𝑘.	From	the	formula	above,	
the	ratio	for	of	𝑇𝑐𝑡𝑘	+	1	to	∑𝑡′∈𝑉(𝑇𝑐𝑡′	+	1)	gives	the	said	conditional	probability.	This	is	the	end	of	the	training	phase.	
These	computed	values	are	stores	and	used	during	the	testing	phase.	

During	the	testing	phase,	for	each	review,	we	first	extract	a	list	of	words	from	the	review	that	also	belong	to	the	
vocabulary.	 Then	 for	each	class,	we	compute	 (log	𝑃(𝑐)	+	∑1≤𝑘≤𝑛𝑟	log	𝑃(𝑡𝑘	|	 𝑐))	using	 the	 values	 determined	 in	 the	
previous	steps.	The	review	then	belongs	to	the	class	for	which	the	above	expression	yielded	the	maximum	value.	
	
	

Results	
We	successfully	 implemented	and	tested	the	Naïve	Bayes	Classifier	on	our	data	set	of	8	books.	Our	Naive	Bayes	

classifier	classified	each	review	of	the	test	data	set	to	a	particular	class,	either	‘good	review’	or	‘bad	review’.	In	doing	so,	

4		

we	estimated	𝑃(𝑐),	which	is	inherently	a	marginal	PMF	and	also	estimated	𝑃(𝑡𝑘	|	𝑐),	which	is	inherently	the	ratio	of	
joint	PMF	of	(𝑡𝑘,	𝑐)	to	the	marginal	PMF	of	𝑐.	

For	every	book’s	data	set,	we	trained	and	tested	our	classifier	on	up	to	5	subsets	of	varying	sizes,	where	80%	of	all	
the	reviews	in	the	subset	were	used	towards	training	the	classifier	and	the	rest	20%	of	the	reviews	are	used	to	test	the	
predictions	of	the	classifier.	For	each	subset,	we	compared	our	predicted	results	with	the	theoretical	results	for	the	
corresponding	subset.	For	each	of	the	8	books,	the	variation	of	accuracy	of	prediction	of	our	classifier	as	the	size	of	the	
data	set	increases	is	illustrated	as	follows:	
	
	

	
	

	
	

5		

	 	
	
	

Conclusions	
As	can	been	seen	from	the	graphs	above,	as	the	size	of	the	dataset	increases,	the	accuracy	of	our	classifier	also	

increases.	Particularly,	in	reference	to	section	Data,	in	can	be	concluded	that	the	accuracy	of	our	classifier	increases	
as	the	absolute	size	of	the	training	data	set	increases.	

Also,	it	may	be	noted	that	for	the	limiting	case	when	the	biggest	subset	of	the	total	number	of	available	reviews	
was	used	to	train	the	data	set,	for	each	of	the	eight	books/data	set,	at	minimum,	the	accuracy	of	our	classifier	is	
greater	than	80%.	Hence	we	may	conclude	that	the	predictions	of	our	classifier	are	good.	

	
	

Future	Scope	
The	 steps	 and	algorithms	described	 in	 this	 project	 are	general	 in	 nature	 and	can	 inherently	 be	extended	 to	 all	

applications	that	may	benefit	from	sentiment	analysis	with	little	to	no	modifications.	These	applications	may	include	
sentiment	analysis	of	tweets	on	twitter	pertaining	to	a	domain	like	the	United	states	presidential	election,	which	could	
give	us	information	on	how	well	was	a	candidate's	speech	received,	whether	a	recent	revelation	about	the	candidate	
affected	the	approval	rating	of	the	candidate	or	sentiment	analysis	of	news	article	on	a	particular	subject	from	different	
news	website	can	help	us	determine	about	the	gravity	of	the	situation	of	that	particular	subject	
	
	

Acknowledgments	
We’d	like	to	thank	the	Center	for	Machine	Learning	and	Intelligent	Systems	at	UC	Irvine	for	providing	useful	data	

set	for	Machine	Learning	applications	.	
We’d	also	like	to	thank	Mohammad	Reza	Rajati	and	the	Teaching	Assistants	for	an	enriching	semester,	and	for	giving	

us	the	toolset	to	accomplish	so	much	in	such	a	little	time.	
	
	

Sources	
Kevin	P.	Murphy,	Machine	Learning:	A	Probabilistic	Perspective	

	
Machine	Learning	Repository,	Center	for	Machine	Learning	and	Intelligent	Systems	at	UC	Irvine	

