In this project, we will evaluate the performance and predictive power of a model that has been trained and tested on data collected from homes in suburbs of Boston, Massachusetts. A model trained on this data that is seen as a good fit could then be used to make certain predictions about a home — in particular, its monetary value. This model would prove to be invaluable for someone like a real estate agent who could make use of such information on a daily basis.
The dataset for this project originates from the UCI Machine Learning Repository. The Boston housing data was collected in 1978 and each of the 506 entries represent aggregated data about 14 features for homes from various suburbs in Boston, Massachusetts. For the purposes of this project, the following preprocessing steps have been made to the dataset:
'MEDV'
value of 50.0. These data points likely contain missing or censored values and have been removed.'RM'
value of 8.78. This data point can be considered an outlier and has been removed.'RM'
, 'LSTAT'
, 'PTRATIO'
, and 'MEDV'
are essential. The remaining non-relevant features have been excluded.'MEDV'
has been multiplicatively scaled to account for 35 years of market inflation.# Import libraries necessary for this project
import numpy as np
import pandas as pd
from sklearn.model_selection import ShuffleSplit
# Import supplementary visualizations code visuals.py
import visuals as vs
# Pretty display for notebooks
%matplotlib inline
# Load the Boston housing dataset
data = pd.read_csv('housing.csv')
prices = data['MEDV']
features = data.drop('MEDV', axis = 1)
# Success
print("Boston housing dataset has {} data points with {} variables each.".format(*data.shape))
In this first section of this project, we will make a cursory investigation about the Boston housing data and provide our observations. Familiarizing oneself with the data through an explorative process is a fundamental practice to help one better understand and justify ones results.
Since the main goal of this project is to construct a working model which has the capability of predicting the value of houses, we will need to separate the dataset into features and the target variable. The features, 'RM'
, 'LSTAT'
, and 'PTRATIO'
, give us quantitative information about each data point. The target variable, 'MEDV'
, will be the variable we seek to predict. These are stored in features
and prices
, respectively.
We will calculate descriptive statistics about the Boston housing prices. These statistics will be extremely important later on to analyze various prediction results from the constructed model.
In the code cell below, you will need to implement the following:
'MEDV'
, which is stored in prices
.# TODO: Minimum price of the data
minimum_price = np.amin(prices)
# TODO: Maximum price of the data
maximum_price = np.amax(prices)
# TODO: Mean price of the data
mean_price = np.mean(prices)
# TODO: Median price of the data
median_price = np.median(prices)
# TODO: Standard deviation of prices of the data
std_price = np.std(prices)
# Show the calculated statistics
print("Statistics for Boston housing dataset:\n")
print("Minimum price: ${}".format(minimum_price))
print("Maximum price: ${}".format(maximum_price))
print("Mean price: ${}".format(mean_price))
print("Median price ${}".format(median_price))
print("Standard deviation of prices: ${}".format(std_price))
As a reminder, we are using three features from the Boston housing dataset: 'RM'
, 'LSTAT'
, and 'PTRATIO'
. For each data point (neighborhood):
'RM'
is the average number of rooms among homes in the neighborhood.'LSTAT'
is the percentage of homeowners in the neighborhood considered "lower class" (working poor).'PTRATIO'
is the ratio of students to teachers in primary and secondary schools in the neighborhood. Using our intuition, for each of the three features above, is it possible that an increase in the value of that feature would lead to an increase in the value of 'MEDV'
or a decrease in the value of 'MEDV'
?We will try to justify our answer for each.
We can build by keeping in mind the following questions.
'RM'
value(number of rooms) of 6 be worth more or less than a home that has an 'RM'
value of 7?'LSTAT'
value(percent of lower class workers) of 15 have home prices be worth more or less than a neighborhood that has an 'LSTAT'
value of 20?'PTRATIO'
value(ratio of students to teachers) of 10 have home prices be worth more or less than a neighborhood that has an 'PTRATIO'
value of 15?import matplotlib.pyplot as plt
plt.plot(prices, features['RM'], 'o', alpha=0.7,color = 'red')
plt.show()
plt.plot(prices, features['LSTAT'], 'x', alpha=0.7, color = 'orange')
plt.show()
plt.plot(prices, features['PTRATIO'], '^', alpha=0.7, color = 'green')
plt.show()
In this second section of the project, we will develop the tools and techniques necessary for a model to make a prediction. Being able to make accurate evaluations of each model's performance through the use of these tools and techniques helps to greatly reinforce the confidence in our predictions.
It is difficult to measure the quality of a given model without quantifying its performance over training and testing. This is typically done using some type of performance metric, whether it is through calculating some type of error, the goodness of fit, or some other useful measurement. For this project, we will be calculating the coefficient of determination, R2, to quantify your model's performance. The coefficient of determination for a model is a useful statistic in regression analysis, as it often describes how "good" that model is at making predictions.
The values for R2 range from 0 to 1, which captures the percentage of squared correlation between the predicted and actual values of the target variable. A model with an R2 of 0 is no better than a model that always predicts the mean of the target variable, whereas a model with an R2 of 1 perfectly predicts the target variable. Any value between 0 and 1 indicates what percentage of the target variable, using this model, can be explained by the features. A model can be given a negative R2 as well, which indicates that the model is arbitrarily worse than one that always predicts the mean of the target variable.
# TODO: Import 'r2_score'
from sklearn.metrics import r2_score
def performance_metric(y_true, y_predict):
""" Calculates and returns the performance score between
true and predicted values based on the metric chosen. """
# TODO: Calculate the performance score between 'y_true' and 'y_predict'
score = r2_score(y_true, y_predict)
# Return the score
return score
Assume that a dataset contains five data points and a model made the following predictions for the target variable:
True Value | Prediction |
---|---|
3.0 | 2.5 |
-0.5 | 0.0 |
2.0 | 2.1 |
7.0 | 7.8 |
4.2 | 5.3 |
Run the code cell below to use the performance_metric
function and calculate this model's coefficient of determination.
# Calculate the performance of this model
score = performance_metric([3, -0.5, 2, 7, 4.2], [2.5, 0.0, 2.1, 7.8, 5.3])
print("Model has a coefficient of determination, R^2, of {:.3f}.".format(score))
This generates the following questions:
We should bear in mind the following points while answering the above questions.
*Answer: Yes I would consider the model to have successfully captured the variation of the target variable because the R2 score of 0.923 which is very close to 1 indicates that the dependent variable can be predicted from the independent variable with a very high likelihood.*
Our next implementation requires that you take the Boston housing dataset and split the data into training and testing subsets. Typically, the data is also shuffled into a random order when creating the training and testing subsets to remove any bias in the ordering of the dataset.
# TODO: Import 'train_test_split'
from sklearn.model_selection import train_test_split
# TODO: Shuffle and split the data into training and testing subsets
X_train, X_test, y_train, y_test = train_test_split(features, prices, test_size=0.2, random_state=42)
# Success
print("Training and testing split was successful.")
*Answer: As seen above we split the data in such a way that the training set has 80% of the data and testing set has 20% of the data. This makes sense because as we will train the parameters and hyper parameters of our model on the higher bulk of data which ensures that our model generalizes well, which is to say that it neither underfits nor overfits. Finally after training our model we test that model on the 20% of the data that was perviously hidden to training to make sure that our model has indeed generalized well.*
In this third section of the project, we'll take a look at several models' learning and testing performances on various subsets of training data. Additionally, you'll investigate one particular algorithm with an increasing 'max_depth'
parameter on the full training set to observe how model complexity affects performance. Graphing your model's performance based on varying criteria can be beneficial in the analysis process, such as visualizing behavior that may not have been apparent from the results alone.
The following code cell produces four graphs for a decision tree model with different maximum depths. Each graph visualizes the learning curves of the model for both training and testing as the size of the training set is increased. Note that the shaded region of a learning curve denotes the uncertainty of that curve (measured as the standard deviation). The model is scored on both the training and testing sets using R2, the coefficient of determination.
Run the code cell below and use these graphs to answer the following question.
# Produce learning curves for varying training set sizes and maximum depths
vs.ModelLearning(features, prices)
Hint: Are the learning curves converging to particular scores? Generally speaking, the more data you have, the better. But if your training and testing curves are converging with a score above your benchmark threshold, would this be necessary? Think about the pros and cons of adding more training points based on if the training and testing curves are converging.
**Answer:
The following code cell produces a graph for a decision tree model that has been trained and validated on the training data using different maximum depths. The graph produces two complexity curves — one for training and one for validation. Similar to the learning curves, the shaded regions of both the complexity curves denote the uncertainty in those curves, and the model is scored on both the training and validation sets using the performance_metric
function.
vs.ModelComplexity(X_train, y_train)
**Answer:
Hint: Look at the graph above Question 5 and see where the validation scores lie for the various depths that have been assigned to the model. Does it get better with increased depth? At what point do we get our best validation score without overcomplicating our model? And remember, Occams Razor states "Among competing hypotheses, the one with the fewest assumptions should be selected."
**Answer:
In this final section of the project, we will construct a model and make a prediction on the client's feature set using an optimized model from fit_model
.
**Answer:
Our final implementation requires that we bring everything together and train a model using the decision tree algorithm. To ensure that we are producing an optimized model, we will train the model using the grid search technique to optimize the 'max_depth'
parameter for the decision tree. The 'max_depth'
parameter can be thought of as how many questions the decision tree algorithm is allowed to ask about the data before making a prediction. Decision trees are part of a class of algorithms called supervised learning algorithms.
In addition, we will find our implementation is using ShuffleSplit()
for an alternative form of cross-validation (see the 'cv_sets'
variable). While it is not the K-Fold cross-validation technique we described earlier, this type of cross-validation technique is just as useful!. The ShuffleSplit()
implementation below will create 10 ('n_splits'
) shuffled sets, and for each shuffle, 20% ('test_size'
) of the data will be used as the validation set. While you're working on your implementation, think about the contrasts and similarities it has to the K-fold cross-validation technique.
Please note that ShuffleSplit has different parameters in scikit-learn versions 0.17 and 0.18.
For the fit_model
function in the code cell below, you will need to implement the following:
DecisionTreeRegressor
from sklearn.tree
to create a decision tree regressor object.'regressor'
variable.'max_depth'
with the values from 1 to 10, and assign this to the 'params'
variable.make_scorer
from sklearn.metrics
to create a scoring function object.performance_metric
function as a parameter to the object.'scoring_fnc'
variable.GridSearchCV
from sklearn.grid_search
to create a grid search object.'regressor'
, 'params'
, 'scoring_fnc'
, and 'cv_sets'
as parameters to the object. GridSearchCV
object to the 'grid'
variable.# TODO: Import 'make_scorer', 'DecisionTreeRegressor', and 'GridSearchCV'
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import make_scorer
from sklearn.model_selection import GridSearchCV
def fit_model(X, y):
""" Performs grid search over the 'max_depth' parameter for a
decision tree regressor trained on the input data [X, y]. """
# Create cross-validation sets from the training data
# sklearn version 0.18: ShuffleSplit(n_splits=10, test_size=0.1, train_size=None, random_state=None)
# sklearn versiin 0.17: ShuffleSplit(n, n_iter=10, test_size=0.1, train_size=None, random_state=None)
#cv_sets = ShuffleSplit(X.shape[0], n_iter = 10, test_size = 0.20, random_state = 0)
cv_sets = ShuffleSplit(n_splits = 10, test_size = 0.20, random_state = 0)
# TODO: Create a decision tree regressor object
regressor = DecisionTreeRegressor()
# TODO: Create a dictionary for the parameter 'max_depth' with a range from 1 to 10
params = {'max_depth':[1,2,3,4,5,6,7,8,9,10]}
# TODO: Transform 'performance_metric' into a scoring function using 'make_scorer'
scoring_fnc = make_scorer(r2_score)
# TODO: Create the grid search cv object --> GridSearchCV()
# Make sure to include the right parameters in the object:
# (estimator, param_grid, scoring, cv) which have values 'regressor', 'params', 'scoring_fnc', and 'cv_sets' respectively.
grid = GridSearchCV(regressor,params,scoring_fnc,cv=cv_sets)
# Fit the grid search object to the data to compute the optimal model
grid = grid.fit(X, y)
# Return the optimal model after fitting the data
return grid.best_estimator_
Once a model has been trained on a given set of data, it can now be used to make predictions on new sets of input data. In the case of a decision tree regressor, the model has learned what the best questions to ask about the input data are, and can respond with a prediction for the target variable. You can use these predictions to gain information about data where the value of the target variable is unknown — such as data the model was not trained on.
# Fit the training data to the model using grid search
reg = fit_model(X_train, y_train)
# Produce the value for 'max_depth'
print("Parameter 'max_depth' is {} for the optimal model.".format(reg.get_params()['max_depth']))
**Answer:
Imagine that you were a real estate agent in the Boston area looking to use this model to help price homes owned by your clients that they wish to sell. You have collected the following information from three of your clients:
Feature | Client 1 | Client 2 | Client 3 |
---|---|---|---|
Total number of rooms in home | 5 rooms | 4 rooms | 8 rooms |
Neighborhood poverty level (as %) | 17% | 32% | 3% |
Student-teacher ratio of nearby schools | 15-to-1 | 22-to-1 | 12-to-1 |
Hint: We will use the statistics calculated in the Data Exploration section to help justify our response. Of the three clients, client 3 has has the biggest house, in the best public school neighborhood with the lowest poverty level; while client 2 has the smallest house, in a neighborhood with a relatively high poverty rate and not the best public schools.
# Produce a matrix for client data
client_data = [[5, 17, 15], # Client 1
[4, 32, 22], # Client 2
[8, 3, 12]] # Client 3
# Show predictions
for i, price in enumerate(reg.predict(client_data)):
print("Predicted selling price for Client {}'s home: ${:,.2f}".format(i+1, price))
**Answer:
** Predicted selling price for Client 1's home: $403,025.00
** Predicted selling price for Client 2's home: $237,478.72
** Predicted selling price for Client 3's home: $931,636.36
Yes these price seem reasonable, because as stated above, Client1's home has 5 bedrooms and is in a reasonable neighbourhood and the poverty percentage is not that high, also the schools in that neighbourhood seem reasonable and hence the price of that house is in the mid-ranges. Also Client 2's is the smallest of the homes, is in an area of high poverty and the ratio of students to teachers is also very high, all in all this house does not seem to be in a good neighbourhood, it is small and hence it has the lowest price of all. Client 3's home is the biggest of all has a very less population of poor people around it and has good schools as seen from the student teacher ratio and hence its high price is justifiable.
An optimal model is not necessarily a robust model. Sometimes, a model is either too complex or too simple to sufficiently generalize to new data. Sometimes, a model could use a learning algorithm that is not appropriate for the structure of the data given. Other times, the data itself could be too noisy or contain too few samples to allow a model to adequately capture the target variable — i.e., the model is underfitted.
Run the code cell below to run the fit_model
function ten times with different training and testing sets to see how the prediction for a specific client changes with respect to the data it's trained on.
vs.PredictTrials(features, prices, fit_model, client_data)